

199-N-122 (C4954) Log Data Report

Borehole Information:

Borehole:	199-N-122 (C49	54)	Site:	100 N Area	
Coordinates	(WA St Plane)	GWL ¹ (ft):	26.5	GWL Date:	09/26/05
North	East		Ground Level		
(m)	(m)	Drill Date	Elevation (ft)	Total Depth (ft)	Type
Not available	Not available	Sep/05	Not available	50	Cable

Casing Information:

Casing Type	Stickup (ft)	Outer Diameter (in.)	Inside Diameter (in.)	Thickness (in.)	Top (ft)	Bottom (ft)
Threaded Steel	0.6	11 3/4	10 1/4	3/4	+0.6	50

Borehole Notes:

Casing diameter and casing stickup measurements were acquired by the logging engineer using a caliper and steel tape. Measurements were rounded to the nearest 1/16 in.

Zero reference is the ground surface. Depth to groundwater was measured by the logging engineer with an e-tape.

The onsite Radiological Control Technician (RCT) reported ⁹⁰Sr between 8 and 25 ft, with activity estimated at 16,000 dpm.

Logging Equipment Information:

Logging System:	Gamma 4E		Type:	SGLS (70%) SN: 34TP40587A
Effective Calibration Date:	12/21/04	Calibration Reference:	DOE/EM-	-GJ854-2005
		Logging Procedure:	MAC-HG	LP 1.6.5, Rev. 0

Logging System:	Gamma 4M		Type:	NMLS SN: H340207279
Effective Calibration Date:	03/24/05	Calibration Reference:	DOE/EM-	-GJ856-2005
		Logging Procedure:	MAC-HG	LP 1.6.5, Rev. 0

Spectral Gamma Logging System (SGLS) Log Run Information:

Log Run	1	2 Repeat		
Date	09/26/05	09/26/05		
Logging Engineer	Spatz	Spatz		
Start Depth (ft)	46.5	13.5		

Log Run	1	2 Repeat		
Finish Depth (ft)	0.5	7.5		
Count Time (sec)	100	100		
Live/Real	R	R		
Shield (Y/N)	N	N		
MSA Interval (ft)	1.0	1.0		
ft/min	N/A ²	N/A		
Pre-Verification	DE911CAB	DE911CAB		
Start File	DE911000	DE911047		
Finish File	DE911046	DE911053		
Post-Verification	DE911CAA	D911CAA		
Depth Return Error	- 1	0		
(in.)				
Comments	No fine gain	No fine gain		
	adjustment.	adjustment.		

Neutron Moisture Logging System (NMLS) Log Run Information:

Log Run	3	4 Repeat	
Date	09/26/05	09/26/05	
Logging Engineer	Spatz	Spatz	
Start Depth (ft)	25.5	13.5	
Finish Depth (ft)	0.5	7.5	
Count Time (sec)	N/A	N/A	
Live/Real	R	R	
Shield (Y/N)	N/A	N/A	
Sample Interval (ft)	0.25	0.25	
ft/min	1.0	1.0	
Pre-Verification	DM032CAB	DM032CAB	
Start File	DM032000	DM032101	
Finish File	DM032100	DM032125	
Post-Verification	DM032CAA	DM032CAA	
Depth Return Error	0	0	
(in.)			
Comments	None	None	

Logging Operation Notes:

Logging was conducted with centralizers on the sondes. Repeat sections were collected in this borehole to evaluate system performance.

Analysis Notes:

Analyst:	McCain	Date:	10/17/05	Reference:	GJO-HGLP 1.6.3. Rev. 0
7 tiluly oti	modam	- 410.	10/11/00	110101011001	000 11021 1.0.0, 1101.0

Pre-run and post-run verifications for the logging systems were performed before and after the day's data acquisition. The acceptance criteria were met.

A casing correction for 0.75-in.-thick casing was applied to the SGLS log data. There is no valid calibration for the neutron moisture data in a 10-in. borehole. Therefore, the data are plotted in counts per second (cps) and no correction factors were applied.

SGLS spectra were processed in batch mode using APTEC SUPERVISOR to identify individual energy peaks and determine count rates. Concentrations were calculated with an EXCEL worksheet template identified as G4EApr05.xls using efficiency functions and corrections for casing, water, and dead time as

determined from annual calibrations. No corrections for dead time were necessary. A correction for water inside the casing is applied to the data below 26.5 ft.

Log Plot Notes:

Separate log plots are provided for the man-made radionuclide (⁶⁰Co and ¹³⁷Cs) detected in the borehole, naturally occurring radionuclides (⁴⁰K, ²³⁸U, ²³²Th [KUT]), a combination of man-made, KUT, total gamma and moisture, total gamma plotted with dead time, and moisture. For each radionuclide, the energy value of the spectral peak used for quantification is indicated. Unless otherwise noted, all radionuclides are plotted in picocuries per gram (pCi/g). The open circles indicate the minimum detectable level (MDL) for each radionuclide. Error bars on each plot represent error associated with counting statistics only and do not include errors associated with the inverse efficiency function, dead time correction, casing corrections, or water corrections. Repeat section plots are provided where appropriate.

An additional plot is provided for shape factor analysis (see below).

Results and Interpretations:

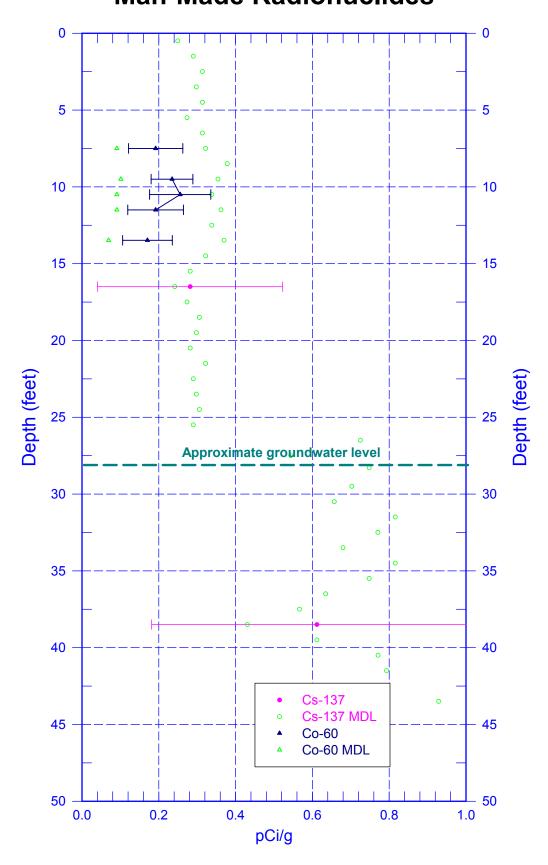
 137 Cs and 60 Co were detected in this borehole. 137 Cs was detected at two isolated depths (16.5 and 38.5 ft) at the MDL. These are statistical fluctuations, and do not represent valid detections. 60 Co was detected from 7.5 to 13.5 ft, with a maximum concentration of about 0.25 pCi/g. It is possible that the 60 Co coexists with 90 Sr.

Because ⁹⁰Sr had been reported by field screening as the hole was drilled, a limited shape factor analysis was performed to detect the presence of bremsstrahlung associated with ⁹⁰Sr. Previous experience in a borehole in the 241-B Tank Farm indicated that variations in SF2* may be diagnostic of ⁹⁰Sr at concentrations above about 500 pCi/g (McCain and Koizumi 2002). SF2* is defined as the ratio between total counts in the 60 to 350 keV range divided by total counts in the 350 to 650 keV range. In the absence of contamination, SF2* typically assumes a value between 3.3 and 3.7, and increases to values greater than 6 in intervals with high ⁹⁰Sr concentrations. For ⁹⁰Sr concentrations between 500 and 1000 pCi/g, SF2* values are transitional between 3.7 and 6. In this borehole, SF2* varied from about 2.8 to 3.8, with a maximum value of about 4.2 near the bottom of the hole. Thus, the shape factor analysis fails to provide any evidence of ⁹⁰Sr. This may be due to the effects of relatively thick casing. The casing thickness for well C3360 in the B Tank Farm was 0.5 in., while this borehole has a casing thickness of 0.75 in. The effects of casing thickness on SF2* are not known.

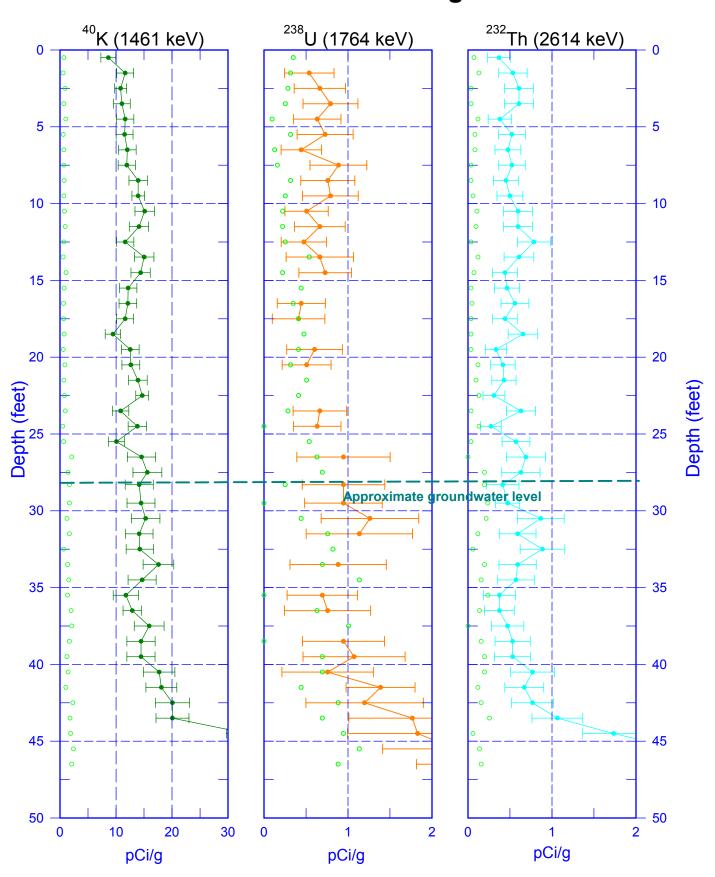
The natural radionuclides (KUT) exhibit relatively little variation over most of the logged depth. Below approximately 43 ft, KUT concentrations rapidly increase to values that appear to be high relative to typical background values. This increase is also reflected in the total gamma log. The cause of this increase is not known. It may be related to a stratigraphic change. It is also possible that the bottom of the casing may have been at about 43 ft, and the values below that depth are over-corrected.

The repeat sections generally indicate good agreement of the naturally occurring KUT and moisture.

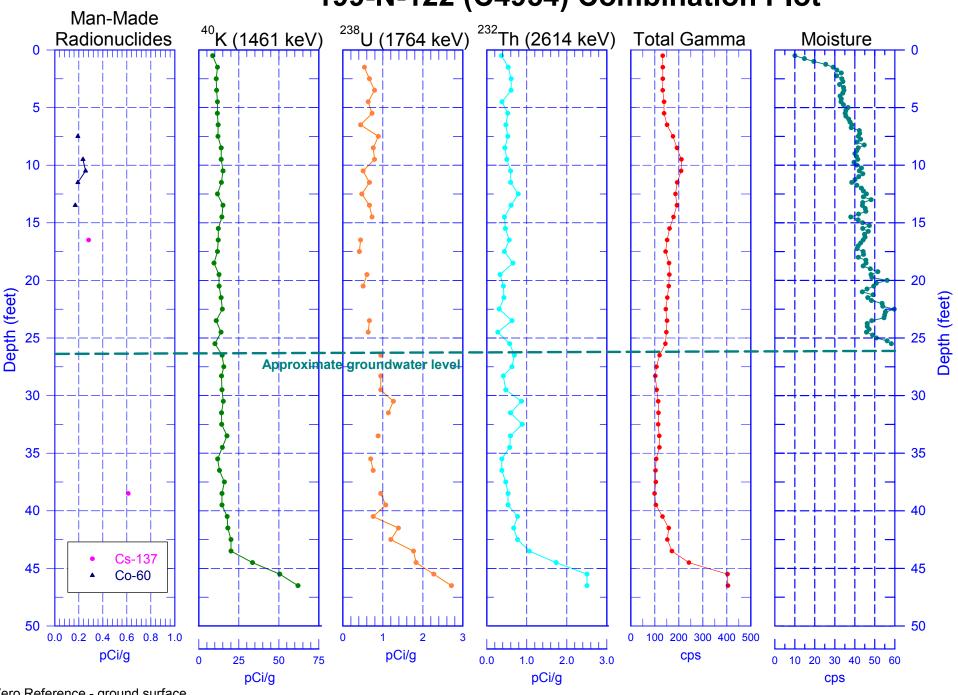
References:

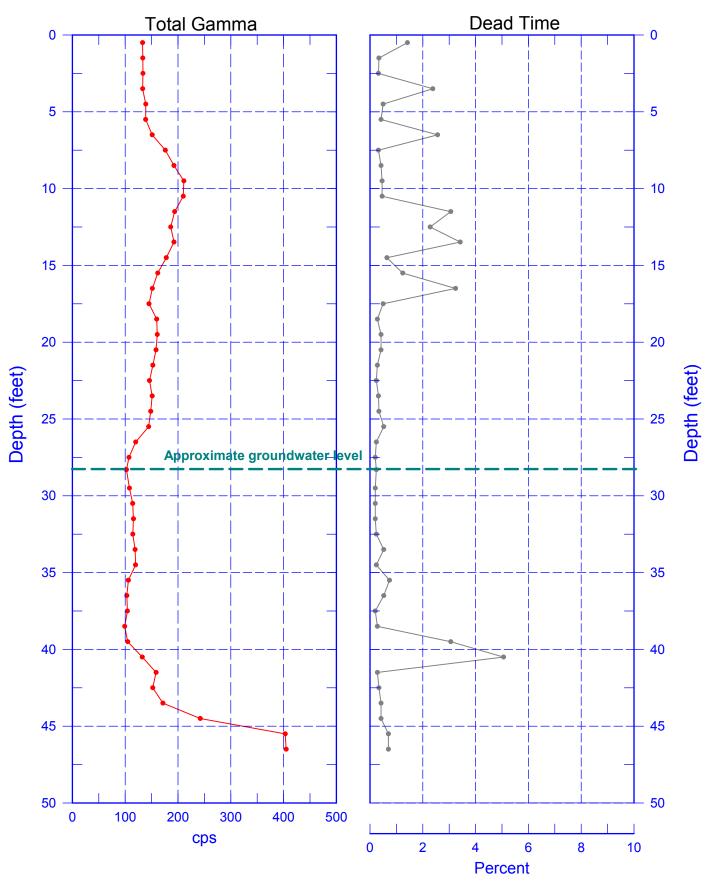

McCain, R.G. and C. J. Koizumi, 2002; *Correlation of Spectral Gamma Log Response and Sr-90 Concentrations for a Steel-Cased Borehole*; GJO-2002-322-TAR; prepared by MACTEC ERS for the Grand Junction Office, Grand Junction, Colorado.

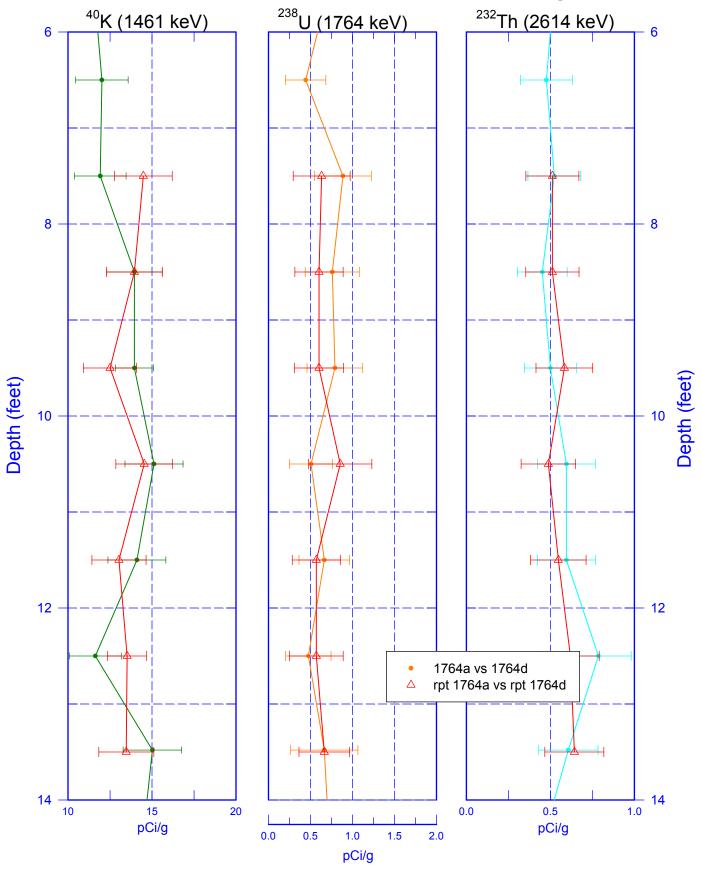
Page 3

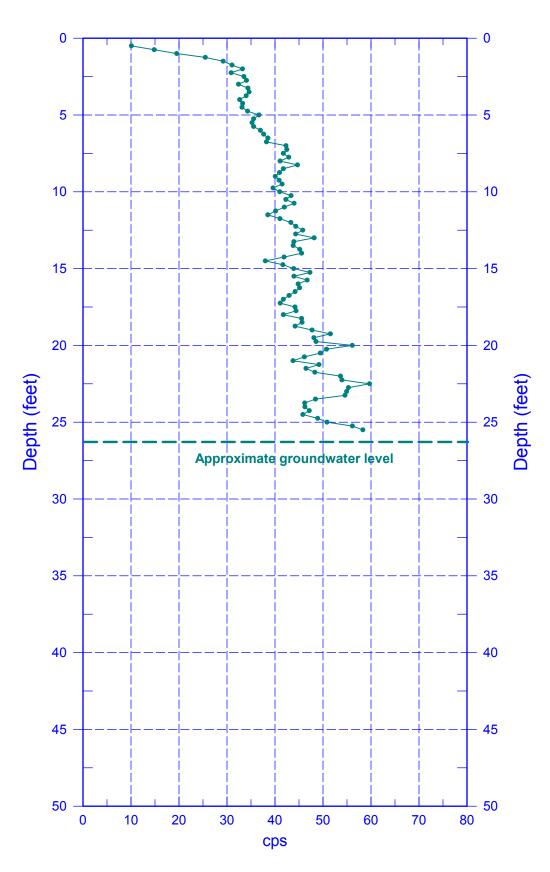

¹ GWL – groundwater level

² N/A – not applicable

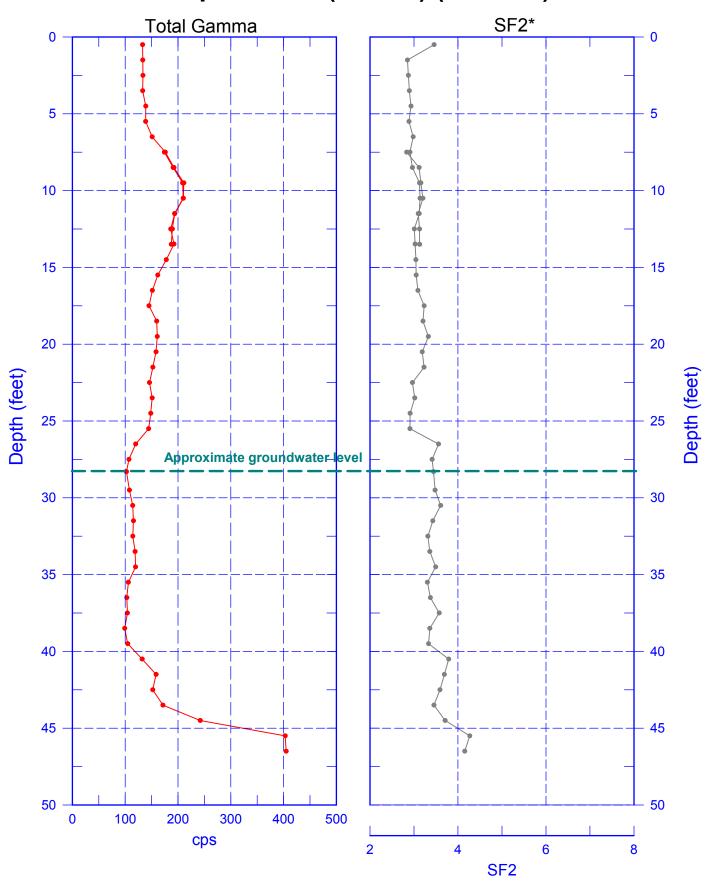

199-N-122 (C4954) Man-Made Radionuclides


199-N-122 (C4954) Natural Gamma Logs


199-N-122 (C4954) Combination Plot


199-N-122 (C4954) Total Gamma & Dead Time

199-N-122 (C4954) Repeat Section of Natural Gamma Logs


199-N-122 (C4954) Neutron Moisture

199-N-122 (C4954) Moisture Repeat Section

199-N-122 (C4954) Shape Factor (60-350)/(350-650)

